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Abstract--A description of a uniform two-phase dispersion in a potential flow is developed in terms of 
a macroscopic (averaged) potential and the average velocity of each phase. Using analogues to 
electromagnetic theory, the constitutive laws are expressed in terms of either an effective conductivity of 
the matrix or its polarization (average dipole moment). Bernoulli's equation for the fluid is expressed in 
averaged form. The results are applied to three example problems. The equations of motion for the 
"two-fluid model" are derived using the hypothesis that the averaged Bernoulli equation is differentiable. 
The continuous phase is incompressible but the dispersed phase may be compressible. The results are 
compatible with Geurst's equations which were derived using variational methods. 
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I N T R O D U C T I O N  

A major research objective of the past two decades has been the derivation of macroscopic 
conservation laws for two-phase flow that could provide the starting point for the solution of 
general problems, playing a role equivalent to the Navier-Stokes equations in single-phase flow. 

The usual approach has been to average the single-phase conservation laws (e.g. Delhaye 1968; 
Ishii 1975). While this leads to some very general forms of equations, it leaves unresolved certain 
terms in the equations that have to be specified by separate "closure hypotheses". 

In a bold and innovative approach, Geurst (1985, 1986) was able to derive macroscopic equations 
of motion using variational methods. This bypassed the need for separate closure laws but left 
unanswered the question of how his results were related to the averaging approach. Moreover, strict 
conditions for validity were not established. 

Wallis (1989a) derived specific solutions to a variety of situations using the methods of classical 
potential flow theory. In every case where comparisons could be made, his results agreed with 
Geurst's. Though no general equations of motion were derived, the macroscopic variables that were 
deduced were related to area and volume averages, incorporating, for example, the average stresses 
in the dispersed phase and the Reynolds stresses in the continuous phase. 

In the present paper it is shown how potential flow theory can be used to derive an averaged 
"Bernoulli equation" for the incompressible continuous phase which is identical to one of Geurst's 
results. This can then be used, together with the overall momentum balance for the combined 
phases, to derive "equations of motion" which agree with Geurst's and provide independent 
evidence for their validity. The dispersed phase may be compressible. 

The usefulness of developing a self-consistent theory of two-phase potential flow has been 
discussed elsewhere (Wallis 1989a). By developing specific expressions for constitutive equations 
and macroscopic properties such as average pressures, stress tensors, Reynolds stresses and so on 
for a well-defined ideal system, the interrelationships between these quantities may be more clearly 
examined and tested. Moreover, the results are useful in practice for analyzing the same sorts of 
"limiting cases" for which classical potential flow is valid; e.g. inertia-dominated flows with rapid 
acceleration, small amplitude oscillations and acoustic wave transmission. The inclusion of viscous 
effects, which are important in many practical situations, is a much more difficult problem in which 
empiricism will probably play a key role. However, some progress in this direction might be 
achieved by using potential theory as a starting point and incorporating viscous effects when they 
are small or confined to regions such as "boundary layers". 
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AVERAGED BERNOULLI  EQUATION FOR THE FLUID 

We begin with the "base case", described by Wallis (1989a, section 3.1), with fluid, occupying 
a fraction q of the total volume, flowing at an average velocity w past stationary particles. The 
net fluid flux is 

J0 = qw. [1] 

For purposes of conceptualization, the flow may be considered to be in a duct, sketched in figure 
1, with uniform area A and length L, all macroscopic dimensions being much larger than the 
particle size. "End effects" and "edge effects" can be made as small as desired by using a sufficiently 
large volume. 

Because of the linearity of Laplace's equation, the macroscopic potential gradient is related to 
the average fluid velocity, or alternatively to the fluid flux, by 

- w 0  = ~ ~ = E,~w =/~i0, [2] 

where /~ is a function of the volume fraction of particles, E2, their shape and geometrical 
arrangement, and is a scalar quantity in an isotropic suspension. /~ could be thought of as the 
inverse of the "conductance" or "porosity" of the matrix. The subscript "0" denotes the "base 
case" where particles are at rest. 

Though figure 1 is useful as an example of a simple operational definition of /~, [2] is a 
fundamental relationship describing the properties of the matrix itself. This "constitutive equation" 
is directly analogous to the classical solutions of the problem of electrical conduction past a matrix 
of dispersed particles considered by, amongst others, Maxwell (1881), Rayleigh (1892) and Jeffrey 
(1973). 

Without the particles, the fluid velocity everywhere would be - V~0. Therefore, the effect of the 
particles is to create a superposed potential that could be ascribed to sources in the particles, 
causing the resultant streamlines to flow around the particles. A sketch of the resulting flow field 
when no external potential is applied and the particle "swims" along, carrying fluid with it by 
"drift", is shown for a special case in Wallis (1989a, figure 3.4). 

Should the particles be "generated" by internal sources and sinks, no streamlines pass through 
the surface of each particle and there is therefore no net internal source. At a distance great 
compared with the particle size, which is the appropriate viewpoint for a "continuum" approach, 
each particle will appear as a dipole. The assembly resembles magnetic or electric grains polarized 
in an applied external field. The dipole strength per unit volume, d, will depend on the particle 
geometry and particle concentration but, in an isotropic assembly, will be proportional to the 
applied fluid velocity or flux: 

d = - Sjo. [31 

This dipole density produces a macroscopic "reactive" potential gradient: 

VOR = d = - 6j0. [4] 
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Figure 1. The "base case": flow past a stationary particle matrix. 
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Now, without the dipoles, the potential gradient is 

W j  = -Jo [51 

and, since no flux is added by inserting the dipoles (the emitted streamlines are all closed within 
the particles), superposition yields the average net potential gradient as 

V~o = VCR + VCj = --(1 + 6)jo. [6] 

Therefore the "inverse porosity", fl, is related to the dipole density by 

fl = 1 + 3. [7] 

This derivation provides a method of computing fl for simple arrays of spheres, e.g. by the 
method of images. Moreover, it establishes a key link to classical works of Lamb (1932) and Taylor 
(1928) in which the added mass for an object in a fluid is derived from the net dipole moment of 
its internal sources. [The "doublet" strength used by Lamb (1932) is 1/(4~z) times the dipole strength 
used here which is more consistent with modern field theory.] 

The equivalence of the dipole density approach and the resistivity approach may be illustrated 
by comparing the solution of Biesheuvel & Spoelstra (1989), for the problem of sudden acceleration 
of a dispersion of bubbles, with Jeffrey's (1973) solution for effective conductivity. In Biesheuvel 
& Spoelstra (1989) v -  u is equivalent to the present -J0 and their dipole density is 

3 3 2[" 1 

where 

E = ~6 Bp-- 3Ap ~$2~)-~73 [9] 

is a summation defined in the referenced papers. The first term in [8] is the contribution from 
individual spheres, while the second term describes "interactions" or reflections. Using this value 
of ~ in [7], the effective conductivity is, to second order, 

1 -~ ' 2+~3  3(1 ) 2  
= 1 ~ - 2 , 2 ,  [10] 

which is Jeffrey's (1973) result. 
In order to derive the properties of the "fluctuations" in the fluid flow induced by the presence 

of the particles, the microscopic potential everywhere in the fluid can now be expressed as the 
combination of an average and a varying part: 

~b = ~0 + q~0. [11] 

If we denote by ( ) the operation of averaging over a volume large compared with the particles, 
we have, from [11]: 

(~b) = ~0 + (q~05. [12] 

Since ~0 is the average potential, it follows that 

(~b0) = 0. [131 

The local fluid velocity is 

Uo = -- V~b = - V¢0 - V~bo. [14] 

Averaging this equation and using [2] we get 

( a o 5  = w = E,/~w - ( V ~ o S .  

Therefore 

[15] 

(V4,o 5 = W(El~ - 1) = E w ,  [16] 
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where 

E = (e, fl - 1) [17] 

is the "exertia" defined by Wallis (1989a, below equation [3.16]). Geurst's " m "  is equal to e lE. 
For all the fluid between the equipotentials 4A and 4a in figure 1, 

fu~dV=- f~uo. ds = ( ~ -  4A)Ae, w. [18] 

Therefore, using [2] and [1], 

(u0:) = S ug dV = el flw2. [19] 
el AL 

When [14] is substituted into the l.h.s, of [19] and [15] is used to evaluate (u) ,  there results 

( ( V 4 0 )  2 )  ~--- e I f l ( e  I f l  - -  1)w 2 = E(E + 1)w 2. [20] 

Equations [13], [16] and [20] are useful for obtaining "macroscopic" laws by averaging equations 
representing conservation laws at the microscopic level. 

40 is the fluctuating part of the potential which emanates from the particles as a reaction to the 
relative velocity, w. When the particles move, this potential field moves with them, just as the 
dipolar field associated with a single sphere moving in an infinite fluid moves as if attached to the 
particle. In principle it ought to be possible to write 

40 = f ' w ,  [21] 

where f is an isotropic function that is clearly interpretable for the dipolar field of a single sphere 
[and also for a sphere moving in a flow with a uniform rate of strain (Voinov 1973)] but requires 
some probabilistic interpretation if it is to describe a random array of spheres, for example. 

Now, let the entire pattern in the base case move with a velocity v 2 which is the velocity of every 
particle. This is equivalent to superposing a potential 42 such that 

- V~b 2 = v 2 . [22] 

The average velocity of phase 1, the fluid, is now 

vt = ( u  > = - < V ( 4 ~  + ~0  + 40 >. [23] 

The new macroscopic potential is 

= 42 + ~0 [24] 

and [16] may be used in [23] to show that 

- V ~  = vl + E w .  [25] 

The "reaction" from the particles, as a result of the relative velocity, 

w = vl - v2 [26] 

must be overcome by an additional potential gradient, Ew, in order to move the fluid. 
In the particular case where there is no macroscopic potential gradient, [25] and [26] may be 

combined to give 

and 

vl = - E w  [27] 

v2 = - ~l flw. [28] 

The ratio of the fluid flux to the particle flux is then 

1 

--EwEl E El fl 
. . . . .  [291 C -El/~we~ e2/~ e2 
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which is perhaps the most straightforward definition of the "added mass coefficient" (Wallis 1989a, 
equation [3.34]) as it represents the volume of fluid carried along by unit volume of particles when 
there is no applied macroscopic potential gradient. 

We now consider a more general motion in which Vl and v2 can vary with time while the particle 
matrix remains large and uniform with a fixed structure. 

The microscopic Bernoulli equation for anywhere in the flow is, if the fluid is incompressible, 

U 2 

ac~ + --2 + p_ + gz = c[t]. [30] 
st p 

Expressing ~b and u as the values for the base case plus the contribution from the imposed motion 
with velocity v 2 we get 

dt (~bs + ~0 + q~0) -~ (uo + v2)" (u0 + vs) i_p_ +gz  = C[t]. [31] 
2 p 

Now, aq~o/dt is made up of two parts, one due to temporal changes in w and one due to the 
motion of the particles carrying their associated potential pattern at a velocity v2. Using [21] we 
have 

a aw 
St (q~0) = f" - ~  - v2" V~b0. [32] 

allot is zero because at this stage there is no change in the structure of the particle matrix. There 
is also no term involving vs" Vw because we are considering a locally uniform flow pattern. 
Substituting [32] in [31] and rearranging gives 

a 0w u s .s 
. 0 . v 2  . v 

St (c~s + ~o) - f" ~-[ ~ -~ + -~ ~" 2" (no + Vcbo) + p- + gz = C[t]. [33] 
P 

The first term in parentheses in [33] is simply ~ f r o m  [24], and the second term in parentheses 
is E1/~w, from [2] and [14]. Therefore, [33] may be simplified and averaged throughout the fluid to 
give 

a ~  E,/~w s ' v ~ .  +~ 
- -  8---[ + - - - i f - -  -e --f + v2 " E, ~w + g z  = C [ t ] ,  [34] 

P 

where [19] was used and (t') set equal to zero in view of [10] and [21]. In [34], z is the elevation 
of the centroid of the fluid over which averaging has been performed. 

Equation [34] is one form of the averaged Bernoulli equation for the fluid when the particles are 
moving uniformly. Whether it is valid, and to what order of accuracy, when there are gradients 
in the macroscopic properties may be debated, but it certainly applies between regions of a flow 
which are each in a uniform state, such as the inlet and outlet regions of a nozzle. The key is [30] 
which is valid anywhere in the fluid. 

Equation [34] may be expressed in several equivalent forms. One variant may be obtained by 
substituting for vs using [26], 

V l  2 W 2 

E - ~ +  p-A + gz = C[t], [35] - 8--7 + Vl. (Vl + g w )  - ~ - -  P 

which is in a form derivable (Wallis 1989b) from Geurst's (1985, 1986) variational approaches that 
have previously been found to be compatible with results obtainable from potential flow theory 
(Wallis 1991). It is notable, in view of [25], that the first two terms of [35] are the total derivative 
of ( - ~ )  in a coordinate system moving at the average fluid velocity. 

An additional variant may be obtained by combining the terms involving E in [35], realizing that 

wS ( V l2V~- ) . (v t -v s )=v~-v~  [36] v ~ ' w - T =  v, 2 

The result is 

- ~ t  + + (v~-v~)+-+gz=C[t] .  [37] 
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Again, this differs from a one-dimensional version by a "correction" proportional to E. Part  of  
the correction arose from averaging the u 2 term in [30]. The origin of  the remainder was the 
convective term in dck/dt due to the particle motion. 

E X A M P L E S  

In order to illustrate and test the general results presented up to now, three simple examples of  
their application will be presented. 

1. Motion o f  a porous sphere in an infinite f luid 

The geometry of  the flow to be considered is shown in figure 2. A porous sphere composed of  
a uniform matrix of  particles occupying a fraction e2 of its volume moves at velocity v2 in the 
z-direction in an unbounded incompressible inviscid fluid that is at rest far from the sphere. 

The fluid velocity fields resemble those found in several analogous situations in electromagnetic 
theory. The field is dipolar outside the sphere and uniform, with average velocity v~, parallel to 
v2, inside the sphere. There is therefore a uniform average dipole density d, described by [3], inside 
the sphere, parallel to v~ and v 2 and given explicitly, using [2] and [1], by 

d = - (8 - 1)et w [38] 

The external field is that from a concentrated dipole at the center of  the sphere equal in strength 
to the net dipole moment  of  the sphere, therefore the velocity potential is 

a 3 

= d.  r 3r 3 [39] 

and the velocity components are, in the spherical coordinates indicated, 

2 a 3 1 a 3 
Vr = ~ -~ d cos O, vo = -~ ~ d sin O. [40] 

and 

On the surface of the sphere, 

d a 

= = d  cos 0 = -xz [41] 
.5 .5 

2 1 /)r = "3 d cos 0, Vo = ~ d sin 0. [42] 

2 

Figure 2. Motion of a uniform porous sphere in an infinite fluid; v~, v 2 and d are the average fluid velocity, 
solid velocity and average dipole density inside the sphere. 
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The net volumetric flux inside the sphere is 

J = EI¥I + E2V2 = ¥2 31- EIW" [43] 

The condition at the surface of the sphere is that the radial components of volumetric flux should 
be continuous. Using [42] and [43], resolved in this direction, we have 

d cos 0 = (v2 + El W)COS 0. [44] 

Using [38] in [44] we may now solve for v2 in terms of d to obtain 

d 2 f l  + 1 
v 2 = 3  f l - 1  [45] 

For a Maxwellian dispersion ((Maxwell 1881; Wallis 1989a), equivalent to neglecting X in [8]), 

E2 
- 5 + 1  

fl - [46] 
El 

and [45] reduces to 

2 d [47] 
v2 = 3 E2 " 

It may now be checked that [2] is indeed valid in the sphere. Using [6] and [26] in [2], we need 
to show that 

d 
- -  = El f lw  + v2 . [48] 

3 

The r.h.s, of  [48] may be evaluated, using [38] and [45], as 

dr  dZfl + 1  d 
f l ~ + 3  f l - I  = - - 3 '  [49] 

which confirms [48] and shows that the "resistivity" approach is consistent with the "polarization" 
approach which was used to derive [45]. 

The average fluid velocity in the sphere follows from [26], [38] and [45] as 

vl = d 2El fl + El - -  3 
3El (fl - 1) [50] 

or, in terms of  v2, using [45], 

[ 3 ]  [51] 
v l=vz  1 Cl (2f l+ l )  ' 

which reduces, for a Maxwellian dispersion, to vl = 0(!). 
The "added mass" of  the sphere is its net dipole moment, divided by its velocity, minus its 

displaced volume (Lamb 1932), i.e. 

~ na3(3 f l - 1  ) [52] 
2fl + 1 E2,. 

The factor in parentheses in [52] could be called the "added mass coefficient". For a Maxwellian 
dispersion it reduces to E2/2, and is consistent with the limiting cases of a solid sphere or a sphere 
composed of  a very dilute suspension. Indeed, for this particular case the added mass is merely 
one-half of  the mass displaced for all particle concentrations. 

Equation [52] may be confirmed by evaluating the total kinetic energy of  the fluid. Outside the 
sphere, in view of [45], it is the same as for fluid surrounding a solid sphere with radius a, volume 
V = 4na3/3 and speed 2v2(fl - 1)/(2fl + 1). This contributes kinetic energy equal to 

/(out = V~- 
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Inside the sphere the fluid kinetic energy is (Wallis 1989a): 

Pl [El V~ + El (El fl -- 1)W:]. [54] Kin=V~ 
Substituting in [54] from [50] and [51], we obtain 

Pl 2F4#2 + # - 5  

Adding [53] and [55], the net fluid kinetic energy is found to be 

K =  V ~ v ~ ( 3  f l i l  1 ,~), [56] 

which confirms [52]. 
We may also use Bernoulli's equation in averaged form, [37], with C(t) equal to the pressure 

at infinity, p~, to determine the mean fluid pressure inside the sphere: 

- , = p o ~ + a ~  v~ (c t f l - l ) (v lZ_V2).  [571 
p p at 2 2 

Since the potential pattern moves with the sphere, we have, using [41] inside the sphere and 
substituting from [45]: 

a~ d 2fl#~ll c3t - v2" V~ = - ~ v z  = - v  2 • [58] 

Substituting from [51] and [58] in [57] we obtain, after some algebra, 

PA = Po~ _ v A F 9fl 
pl pl 2 L£1(2ff+ 1) 2 

which reduces, for a Maxwellian dispersion, to 

Pl P~ v~ 
Pl Pl 4 £2. 

11' [59] 

[601 

In all of the above it was assumed that the particles composing the sphere were small enough 
that the continuum description could be used right up to the surface of the sphere. 

2. Flow past a stationary porous sphere 

Imposing a velocity -v2 on the entire flow analyzed above, we obtain a flow past a stationary 
porous sphere. At infinity the fluid velocity is - rE  and the pressure Poo. 

In this case the average velocity of fluid in the pores of the sphere follows from [51] as 

-3v2 [61] 
vl e l ( 2 f l + l )  

For a Maxwellian dispersion this velocity is the same as the value at infinity, but some flow is 
diverted around the sphere because the particles occupy part of  its volume. 

The averaged Bernoulli equation, [37], for the fluid is now, between infinity and the interior of 
the sphere, 

9 

P~o b -~ = P '  + e~flv~. [621 
Pl z Pl 

Use of [62] in [61] confirms [59] and serves to illustrate the validity of the "extra" term that appears 
in [37] as a result of both the averaging procedures and the convection of the dipole pattern with 
the particles. 

3. Motion of  a porous cylinder normal to its axis in an infinite fluid 

The analysis follows the procedure already used for the moving sphere, borrowing the 
appropriate standard results from classical field theory. 
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Equation [38] is still valid. The flow outside the cylinder is described in cylindrical coordinates 
by 

a cos 0 
= d 2----if- [63] 

and 
a 2 a 2 

vR = ~ d cos 0, v0 = ~-5 d sin 0. [64] 

On the surface of the cylinder, R = a: 

d d d d .  
= -~ a cos 0 = -~ x, vR = -~ cos 0, vo = -~ sin 0. [65] 

From continuity of flux normal to the surface of the cylinder, 

d~-I-  1 
V 2 ~ - -  

E q u a t i o n s  [38], [65] and [66] confirm [25]. 
From [26], [38] and [66], 

V! = V 2 I I  

which reduces, for a Maxwellian dispersion, to 

2 f l - l "  
[66] 

2 l E~ (fl + 1) ; [67] 

E2 
D m V 2  

vt 4 - -  E 2 

[which differs from the result (Vl = 0) obtained for the moving sphere]. 
The added mass coefficient, based on the total volume of the cylinder, is 

flfl_-I 2 ~ 1  c2 

which becomes, for a Maxwellian dispersion, 

E: 2 

2 £2 
1 - -  

4 

with, again, the right limits as e2---,0 or E2--, 1. 

[68] 

[69] 

[70] 

Other examples 

The three examples worked out above were inspired by well-known problems in classical field 
theory. Further solutions can be developed by adapting other known results from analogous 
problems in electromagnetic theory, heat transfer by conduction, ideal fluid mechanics etc. 

EQUATION OF MOTION FOR THE F L U I D  

Since [37] is valid between any points in the macroscopic flow which are each at a uniform state, 
it is reasonable to hypothesize that it is a differentiable function whenever a "continuum" approach 
is appropriate (perhaps mathematicians can provide assessments of the degree of approximation 
involved). This is equivalent to regarding continuous changes as a series of small steps between 
uniform states. 

Previously, Wallis (1990) derived [37] from Geurst's equation of motion for the fluid. Therefore, 
the latter can be deduced from the former merely by reversing the logical process. This will now 
be done, using a slightly different format that actually leads to a simpler result. 
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We take the gradient of [37], making use of [25] and standard expansions for the gradient of 
velocity squared: 

Ov~ d 
0--7 + ~ (Ew) + vl " Vvj + vl × V × vl 

+E(vl " Vvl +vt  x V × vl -v2"Vv2-v2  x V x v2) 

+ w "  ( v l - 2 )  VE + Vp' Pl g = 0 .  [71] 

Taking the curl of [25] gives 

V × vl = - V  x (Ew) = w × V E -  EV × w. [72] 

When [72] is used and it is realized that 

vl x (w x VE) = (vl ' VE)w - (vt" w)VE, [73] 

[71] becomes 

¢~VI E(dvl dv: ) 
~'--'7 + ¥1 ' V¥1 '~ ~x ~/  "]- I/1 " VVl - -  - ~ -  - -  V2" V¥2 + w x V x v 2 

+ w  + v t ' V E  - ~ w V g + - - - g - - 0 .  [74] 
Pl 

Equation [74] resembles the usual equation of motion for the fluid but contains additional terms, 
involving the exertia, that describe inertial coupling between the phases. 

The first term in parentheses is the relative acceleration together with a "lift" component that 
deserves further study. Such a term is often called an "added mass force". 

The second term in parentheses is the rate of change of the exertia in a system moving at the 
average fluid velocity. By invoking the continuity equation for the fluid it may even be reduced 
to a single term: 

dE ) dev. 
0--7 + v,. VE = ~ \ ~ -  + vl" VE1 = - c ,  dE, v,. [751 

The term involving w z may be related (Wallis 1989a, equation [3.16]) to the pressure difference 
between the phases (strictly speaking, we also need a proof that this is valid for unsteady motion): 

- --wZVE2 = ---~w z dE = PlplEl--PZ VEI • [76] 

A pressure difference term of this form has been postulated by many authors (e.g. Banerjee & 
Chan 1980). 

Equation [74] is compatible with the equations presented in various forms by Geurst (1986), who 
showed that the terms involving exertia were objective and independent of the coordinate system. 

EQUATION OF MOTION OF THE PARTICLES 

We start with the momentum conservation equation for the combined phases, using the 
momentum density and combined momentum flux and stress tensor derived by Wallis (1989a, 
equation [3.152]): 

d 
(~5 (El Pl V| "[- £2P2V2) "[- V ° (E l Pl VI VI "~ El p2V2V2 + El Pl Eww) 

+ V(Elpl + c2Pz) -- (EtPl + E2P2)g = E2f~; [77] 

f2 is an external force acting on the particles per unit particle volume. 
In addition, it will be useful to have the continuity equations for each phase: 

d 
dt (El Pl ) + V. (El Pl Vl ) = 0 [78] 
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and 
d 
~"-~ (£2P2) -I- V" (E2P2V2) = 0. [79] 

Using [78] and [79] in the usual way in [77] and subtracting Elp I times [74] from it, incorporating 
[76] as well, we get 

[ V2 ) Ti°v2 ) , l P l E \ u t  +v  I - - , 2 . V v 2 + w x V × v  2 E2P2~-- ~ -  "l- V 2 " V¥ 2 - -  • Vv I 

--Ei01W "~- + VI" VE + E2Vp2 + V" (Clo1Eww) = e2(f2 + 02g). [80] 

Note that there is no requirement that phase 2 be incompressible. 
Equation [80] could be divided by e2 and called the "equation of motion of phase 2". The second 

and third terms, that have changed sign from [74], could be ascribed to a "mutual inertial coupling 
force". 

The only remaining term requiring explanation is the final one on the l.h.s. It has the appearance 
of a stress tensor resulting from the relative motion and might at first sight appear to be of the 
"Reynolds stress" type that would be happier if located in [74]. A partial explanation for why it 
appears in [80] instead is that the "pressure" P2 does not completely describe the state of stress of 
the particles which have their own tensor stress system, influenced by the relative motion (Wallis 
1989a, p. 297). P2 is actually the bulk stress in the particles but differs from the principal stresses 
which are oriented along and perpendicular to the relative motion and are intimately related to 
the Reynolds stresses in the fluid. 

The terms involving E in [80] may be arranged as follows: 

- - E l P i ( ~ - / E w ) - - E I P l E ( v I ' V W + W ' V V 2 + W × V × v 2 ) - - ' , p l W W l ' V E  

+V" (ElplEVlW)-- V" (EIpIEV2w). [81] 

The first divergence term may be expanded: 

V" (E 1 Pl EVl w) = E w V "  (£1/71Vl ) q- El Pl Vl " V ( E w )  

= - -  E w  ~ (E I Pl ) + El Pl EVl " Vw -3 I- E l plWVl • V E ;  [82] 

and, moreover 

w. Vv2 + w × V × v2 = w. (Vv2)T. 

Using [82] and [83] in [81], all the terms involving E in [80] can be expressed as 

c~ 
c3t (ElplEw) -- EIplEw" (Vv2) r -- Y • (ElplEv2w), 

[83] 

which is the same as the "mutual force" derived by Geurst (1986) but does not have a direct 
physical interpretation in this form. 

Clearly, care must be used with consistent definitions and interpretations. The "mutual force" 
that appears in [74] and [80] differs from Geurst's, although the overall equations are the same as 
his, because he includes the V. (El Pl Eww) term in the equation for the fluid, rather than the one 
for the particles as we have done. The present formulation is simpler in appearance and may be 
more amenable to mechanistic interpretation. 

Many further manipulations of these equations may be performed to demonstrate internal 
consistency and derive new results. For example, starting with the equations of motion it can be 
deduced (Geurst 1985; Wallis 1989b) that if V x f2 = 0, the two composite velocities, n~ = v~ + Ew 
and n: = v2 - (plEI/P2 E2)•W are each equal to the (negative) gradient of two macroscopic potentials, 

and ~/, which appear directly from the variational approach used by Geurst. 
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It is useful to check the equations in the dilute limit, c2--.0. We set 

E = E2 C, [84] 

where C is the usual "added mass coefficient" and a constant. Neglecting terms of second order 
in E2, [84], [78] and [80] reduce to 

V" v, = O, [85] 

OV 1 Vpl 
- -  + v l  " V v l  + - -  - -  g = 0 [ 8 6 ]  
cOt p~ 

and 

[COY2 ) /COvl Ovz ) 
-plq  +v ,  × v × v, 

cwL(°V" ) - Pl Vp \ Ot + v:. VVp + VP, = f2 + p2g, [87] 

where [79] was used and Vp is the volume of a typical particle with assumed constant shape. Similar 
results were derived by Geurst (1986) for spherical particles. The first term involving C in [87] has 
the same form as deduced by Drew & Lahey (1987) and the second appears in LhuiUier (1982) for 
the case of a bubble. Although a "lift force" appears from the mathematics, it is unlikely to be 
important for potential flows since V x vt vanishes in the dilute limit E--*0 by virtue of [25]. 

DISCUSSION 

Up to [70], the arrays of particles analyzed had, at least locally, a fixed structure which 
determined fl (or E). Bernoulli's equation, [30], being valid throughout an entire connected region, 
enabled relations such as [34], [35] or [37] to provide a bridge between properties in different parts 
of a flow with different void fractions and structure. The developments after [70] followed from 
the hypothesis that small changes between adjacent regions could occur in such a way that [37] 
was differentiable. In performing this differentiation it was implied that the exertia, E, depended 
only on the particle concentration, c2, as it does, for example, in a Maxwellian assembly of spheres. 
It was also assumed that the particles all have the same velocity in the local averaging volume in 
which macroscopic properties are defined. 

A more sophisticated treatment would have to consider at least two additional features: 

(a) Motion of particles relative to each other as a result of hydrodynamic inter- 
actions and possible collisions. 

(b) Changes in the arrangement of the particles, especially in flow fields with large 
strains. 

It might be fortunate that these effects are small because of "relaxation" mechanisms that drive 
the assembly towards an equilibrium state with small deviations in particle velocity and a "random" 
arrangement for which E is isotropic and depends only on E:. Otherwise there are prospects of the 
properties of the dispersion depending on its entire past history, which could transfer energy to 
random (or structured) particle velocity fluctuations and orient the particles in preferred geometri- 
cal patterns (e.g. rows or columns parallel to the axes of extensive strain). Such dispersions would 
be much more difficult to analyze and would not have "equations of motion" that could be 
expressed solely in terms of local conditions. An indication that these effects may be real is given 
by the observation (Geurst 1985; Prosperetti & Satrape 1990) that Geurst's equations are not 
well-posed and lead to instabilities if E is expressed as a function of E2 using classical results such 
as [8] or [46]. 
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